Kalkulus

Bab 1 Pendahuluan & Sistem Bilangan
Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu yang mempelajari perubahan, sebagaimana geometri yang mempelajari bentuk dan aljabar yang mempelajari operasi dan penerapannya untuk memecahkan persamaan. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
Sistem Bilangan atau Number System adalah Suatu cara untuk mewakili besaran dari suatu item fisik. Sistem Bilangan menggunakan suatu bilangan dasar atau basis (base / radix) yang tertentu. Dalam hubungannya dengan komputer, ada 4 Jenis Sistem Bilangan yang dikenal yaitu : Desimal (Basis 10), Biner (Basis 2), Oktal (Basis 8) dan Hexadesimal (Basis 16).

Bab 2 Pertidaksamaan
Pertidaksamaan dalam matematika adalah kalimat/pernyataan matematika yang menunjukkan perbandingan ukuran dua objek atau lebih. Dua notasi dasar dalam pertidaksamaan adalah:
Notasi < menyatakan lebih kecil, contohnya: 2<3 dan x + 1 < 3.
Notasi > menyatakan lebih besar, contohnya: 3>2 dan 3x + 1 > 5.


Bab 3 Fungsi
Fungsi dalam istilah matematika merupakan pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada anggota himpunan yang lain (dinamakan sebagai kodomain). Istilah ini berbeda pengertiannya dengan kata yang sama yang dipakai sehari-hari, seperti “alatnya berfungsi dengan baik.” Konsep fungsi adalah salah satu konsep dasar dari matematika dan setiap ilmu kuantitatif. Istilah "fungsi", "pemetaan", "peta", "transformasi", dan "operator" biasanya dipakai secara sinonim.


Bab 4 Limit
Limit adalah subjek matematika yang mempelajari apa yang terjadi pada suatu fungsi ketika inputnya dimasukkan mendekati suatu angka.


Bab 5 Kekontinuan Fungsi
Fungsi kontinu dalam matematika adalah fungsi, yang bila dijelaskan secara intuitif, perubahan kecil dalam masukannya berakibat perubahan kecil pula pada keluaran. Bila tidak demikian, fungsi tersebut dikatakan diskontinu. Fungsi kontinu dengan fungsi invers kontinu pula disebut bikontinu. Gagasan intuitif kekontinuan dapat diberikan oleh pernyataan bahwa fungsi kontinu adalah fungsi yang grafiknya dapat digambar tanpa mengangkat kapur dari papan tulis.


Bab 6 Diferensial (1)
Diferensial adalah salah satu cabang kalkulus dalam matematika yang mempelajari bagaimana nilai suatu fungsi berubah menurut perubahan input nilainya. Topik utama dalam pembelajaran kalkulus diferensial adalah turunan. Turunan dari suatu fungsi pada titik tertentu menjelaskan sifat-sifat fungsi yang mendekati nilai input. Untuk fungsi yang bernilai real dengan variabel real tunggal, turunan pada sebuah titik sama dengan kemiringan dari garis singgung grafik fungsi pada titik tersebut. Secara umum, turunan suatu fungsi pada sebuah titik menentukan pendekatan linear terbaik fungsi pada titik tersebut.


Bab 7 Diferensial (2)

Bab 8 Diferensial Parsial
Persamaan diferensial parsial (PDP) adalah persamaan yang di dalamnya terdapat suku-suku diferensial parsial, yang dalam matematika diartikan sebagai suatu hubungan yang mengaitkan suatu fungsi yang tidak diketahui, yang merupakan fungsi dari beberapa variabel bebas, dengan turunan-turunannya melalui variabel-variabel yang dimaksud. PDP digunakan untuk melakukan formulasi dan menyelesaikan permasalahan yang melibatkan fungsi-fungsi yang tidak diketahui, yang merupakan dibentuk oleh beberapa variabel, seperti penjalaran suara dan panas, elektrostatika, elektrodinamika, aliran fluida, elastisitas, atau lebih umum segala macam proses yang terdistribusi dalam ruang, atau terdistribusi dalam ruang dan waktu. Kadang beberapa permasalahan fisis yang amat berbeda memiliki formulasi matematika yang mirip satu sama lain.

Komentar

Postingan populer dari blog ini

Pemanfaatan Teknologi Informasi

INSTRUCTION DETECTION SYSTEM

TUGAS UTS PTI